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ABSTRACT  

The detection of apple leaf lesions in complex environments is hindered by several factors, such as the small 

size of lesion areas, variability in lighting conditions, and occlusions caused by overlapping leaves. These 

issues significantly limit the performance of existing detection models. Therefore, an enhanced detection 

algorithm for apple leaf lesions, termed PAME-YOLO, is proposed in this study, building upon the YOLOv8s 

framework. First, the main convolutional module is reconstructed using the Parallelized Patch-Aware Attention 

Module (PPA) while fusing Efficient Multi-Scale Attention (EMA). This effectively strengthens the model’s 

capacity to localize small target lesions in complicated environments. Second, an Attention-based Intra-scale 

Feature Interaction (AIFI) is introduced into the feature extraction network to replace the Spatial Pyramid 

Pooling-Fast (SPPF) module, which better captures the subtle features of apple leaf lesions. Next, the 

downsampling enhancement module is designed to mitigate information loss during the original downsampling 

process, which contributes to a significant improvement in detection precision. Finally, the Efficient Head is 

designed, a lightweight and efficient detection head that lowers parameter count and computational intricacy 

without sacrificing accuracy. Compared with YOLOv8s, the proposed model delivered a notable enhancement 

in performance, with precision (P) increasing by 0.8 points and recall (R) by 1.5 points. The mAP@0.5 achieved 

91.4%, which is 1.5 percentage points higher than that of YOLOv8s. Meanwhile, the mAP@0.5:0.95 rose to 

56.4%, reflecting an increase of 1.4 percentage points. The improved model realizes the accurate detection of 

apple leaves lesions in complicated surroundings, offering reliable technical assistance for disease prevention 

and contributing to the development of the apple industry. 

 

 

摘要 

在复杂环境中，苹果叶片病斑的检测受到诸多因素的影响，如病斑区域尺寸较小、光照条件变化以及叶片重叠

造成的遮挡等问题。这些因素严重限制了现有检测模型的性能。为此，本文在 YOLOv8s 算法的基础上提出了

一种称为 PAME-YOLO 的苹果叶片病斑检测算法。首先，本文使用并行补丁感知注意力模块同时结合高效多尺

度注意力机制对主干卷积模块进行重构，这有效增强了模型在复杂环境中对小目标病斑的定位能力。其次，本

文在特征提取网络中引入基于注意力的尺度内特征交互模块，来替换原有的快速空间金字塔池化模块，以更好

地捕捉苹果叶片病斑的细微特征。随后，本文设计了新的下采样增强模块，以弥补原有下采样过程中的信息丢

失，从而显著提高检测精度。最后，我们设计了一种轻量高效的检测头 Efficient Head，该检测头能够在保持精

度的同时降低模型参数和计算复杂度。与 YOLOv8s 相比，所提出的模型在性能上取得了显著提升，精确率（P）

提高了 0.8 个百分点，召回率（R）提高了 1.5 个百分点，mAP@0.5 达到了 91.4%，比 YOLOv8s 高出了 1.5 个百

分点，同时 mAP@0.5:0.95 达到了 56.4%，提高了 1.4 个百分点。综上所述，改进后的模型实现了在复杂环境下

对苹果叶片病斑的精准检测，为病害防控提供了可靠的技术支持，助力了苹果产业的可持续发展。 
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INTRODUCTION 

 Apple is a major cash crop that is widely consumed across the globe (Bai et al., 2021). However, it is 

susceptible to diseases, particularly those affecting the leaves. Leaf infections can significantly disrupt 

physiological metabolism and photosynthesis, directly impairing apple growth and harvest. Consequently, 

prompt and precise identification of apple leaf diseases is essential for effective orchard management. This 

not only enables growers to prevent the spread of diseases and improve fruit quality and yield but also 

contributes to substantial economic and environmental benefits. 

 In earlier years, manual observation was the primary method for identifying apple diseases in most 

orchards and farms. However, this approach is time-consuming, prone to misdiagnosis, and increasingly 

inadequate for meeting the demand for fast and accurate disease identification. As artificial intelligence 

continues to evolve, object detection techniques powered by deep learning (Yann et al., 2015) have found 

increasing application in the agricultural situations. According to the processing pipeline, models for object 

detection are typically categorized into two distinct groups: two-stage and one-stage detectors. The most 

representative example of a two-stage detection method is R-CNN (GIRSHICK et al., 2014). Gong et al., (2023) 

suggested an improved Faster R-CNN algorithm. This algorithm has an average accuracy of 63.1% on an 

annotated apple leaf disease dataset, which surpasses other target detecting techniques. Zhang et al., (2021) 

presented a soybean leaf disease detection model named MF3R-CNN, which employs skip connections 

between multiple layers in the feature extraction network to facilitate multi-feature fusion, thereby effectively 

fulfilling the necessities of object detection tasks. Despite the great detection accuracy provided by two-stage 

algorithms, their training and inference processes are time-consuming, which limits their suitability for 

deployment in intelligent agricultural equipment. 

 Compared to two-stage detectors, one-stage detection methods are more appropriate for practical 

applications due to their better scalability and faster inference speed. Among the most well-known one-stage 

detection methods is the YOLO series, which has gained widespread deployment in the agriculture industry. 

Abulizi et al., (2024) integrated lightweight dynamic Sampling (DySample) to enhance small lesion feature 

extraction and employed Margin Penalty Distance Intersection over Union (MPDIoU) for precise localization of 

overlapping lesion boundaries. These enhancements achieved higher accuracy in tomato leaf disease 

recognition. To identify apple leaf diseases, Li et al., (2023) proposed an improved YOLOv5s model by 

introducing a Bi-Directional Feature Pyramid Network (BiFPN), a Transformer module, and the Convolutional 

Block Attention Module (CBAM) to reduce background interference. The model achieved an average detection 

accuracy of 84.3% in natural environments. Gao et al., (2024) replaced the traditional convolution and C2f 

structure with GhostConv and C3Ghost, respectively. They also incorporated the Global Attention Mechanism 

(GAM) and a BiFPN to enhance the detection of small apple leaf lesions in complicated environments. 

 Although the studies described above have made some progress, several problems in detecting apple 

leaf diseases remain unresolved. First, some disease spots are small, and different diseases may exhibit 

similar features, resulting in the model struggling to detect the lesions accurately. Additionally, in real-world 

cultivation environments, factors such as leaf occlusion and uneven lighting can reduce the model’s capability 

to concentrate on diseased areas, limiting detection performance. Moreover, some studies have placed 

excessive emphasis on improving precision, while overlooking the increased model intricacy and computing 

expenses. 

 To overcome these issues, PAME-YOLO was developed, an enhanced YOLOv8s-based model for 

detecting apple leaf disease spots. The following contributions were made by this paper: 

 1. The C2f-PE module is designed by incorporating the PPA (Xu et al., 2024) module and the EMA 

(Ouyang et al., 2023) attention mechanism to further enhance the capability of identifying small lesions and 

differentiating similar features. 

 2. The SPPF module is substituted with the scale interaction module AIFI (Zhao et al., 2024), which 

strengthens the high-level feature extraction, improves detection performance, and reduces redundant 

computation. 

 3. The downsampling enhancement module MPC is designed to improve the model’s attention to small 

lesions in complex backgrounds, enabling it to better preserve key contextual information and enhance 

detection accuracy. 

 4. Aiming at the problem of high computational and large parametric quantities of the original detection 

head, the Partial Convolution (PConv) (Chen et al., 2023) was employed to design the Efficient Head detection 

head, which increases detection efficiency while lowering computing costs and model complexity. 
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MATERIALS AND METHODS 

 

Dataset 

The raw images of the apple leaf disease in this research are acquired by the publicly available dataset 

AppleLeaf9 (Yang et al., 2022). Approximately 94% of the images in this dataset were taken in field settings, 

which ensures that the collected image data meet the requirements for complex backgrounds. From the 

dataset, 1,607 images of three common apple leaf spot diseases—Alternaria leaf spot, rust, and grey spot— 

were selected as the original image data. To address the limited original dataset, the data augmentation was 

applied to increase the images to 8952. After that, the augmented images were separated into training, 

validation, and test sets at a proportion of 8:1:1, with disease locations and categories annotated using the 

Labelimg annotation tool. 

 

YOLOv8 

YOLOv8 is a strong visual recognition framework made to handle a range of computer vision tasks, 

including object detection, image classification, and instance segmentation (Wang et al., 2025). Compared to 

its predecessors YOLOv5 and YOLOv7, YOLOv8 delivers improved recognition precision along with 

accelerated inference performance. Its architecture comprises three primary components: the backbone, the 

neck, and the detection head (Tian et al., 2024). In feature extraction and fusion stages, YOLOv8 substitutes 

the C2f structure for the C3 module that was utilized in YOLOv5, facilitating richer gradient flow and improving 

feature representation. The classification and detection tasks are separated in the head by YOLOv8's 

decoupled structure, enhancing detection performance. Furthermore, it replaces the anchor-based mechanism 

of YOLOv5 with an anchor-free approach, giving the model greater flexibility and efficiency in identifying 

objects of different sizes and forms. 

 

Improved YOLOv8 Algorithm 

 To address challenges such as the small size of disease spot features, high similarity among different 

lesions, reduced detection accuracy in complicated cultivation environments, and the extensive parameters, 

this study suggests an improved model based on YOLOv8s, named PAME-YOLO, as illustrated in Fig. 1. 

 

Fig. 1 - Overall architecture of the PAME-YOLO 
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C2f-PE 

 The C2f module can enable multi-scale feature extraction and fusion. Its multi-branch design strategy 

enhances the network's adaptability and representation capability. However, its ability to detect small targets 

and distinguish similar features remains limited. Therefore, this study redesigns and enhances the C2f module 

by integrating the PPA module and the EMA attention mechanism. The enhanced C2f-PE module is displayed 

in Fig. 2. 

Fig. 2 - Structure of C2f-PE Module 

 

Multiple downsampling operations can lead to the loss of details about small targets and missed 

detections. To make the model better at locating small disease spots, this paper incorporates the PPA module 

from the context fusion network HCF-Net into the C2f module. As illustrated in Fig. 3, the PPA module is made 

up of two essential parts: a multi-branch feature extraction architecture and an attention mechanism. The main 

benefit of PPA is its multi-branch feature extraction strategy. This method effectively increases the accuracy 

of detecting tiny disease spots on apple leaves by employing parallel branches, which extract features at 

different sizes and levels. The initial step in the feature extraction procedure is to convert the input tensor
' 'H W CF    into 

' ' '' H W CF    using point-wise convolution. Then, 'F is handled through three distinct 

parallel paths, which respectively generate the local feature tensor 
' ' 'H W C

localF  
, the global feature tensor

' ' 'H W C

glocalF  
, and the linear feature tensor 

' ' 'H W C

convF  
. Lastly, the fused feature map 

' ' 'H W CF R    

is obtained by adding the three tensors. After multi-branch feature extraction, an attention module is applied 

to produce the final output. The attention module is constituted by a sequence of channel attention (Wang et 

al., 2020) and spatial attention mechanisms (Woo et al., 2018). This design is particularly effective for detecting 

small disease spots on apple leaves and suppressing background noise, leading to improved accuracy and 

robustness of the model. The parameter p, which defines the patch size, serves to differentiate local and global 

branches, thereby promoting spatial feature fusion and displacement encoding (Bi et al., 2025). 

 

 

 

Fig. 3 - Parallelized Patch-Aware Attention Module 
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A certain degree of feature similarity exists both among different types of disease spots and between 

disease spots and surrounding objects, which can result in false detections. This issue is related to the 

limitation in the model feature extraction capability or the insufficient ability to select extracted feature 

information. To strengthen the model’s feature extraction capacity, this paper also incorporates the EMA 

attention mechanism after the C2f module.  

Fig. 4 presents the EMA module, which adopts cross-spatial learning to achieve efficient scale-aware 

attention. It reshapes part of the channels into the batch dimension and applies grouping in the channel 

dimension without requiring dimensionality reduction. This successfully stops channel feature information from 

being lost while reducing computational cost, and it features high accuracy and a low parameter count. 

 

Fig. 4 - EMA attention mechanism framework diagram 

 

AIFI

The SPPF module is an essential component of YOLOv8, enabling multi-scale feature fusion to 

enhance contextual information capture. However, it incurs a high cost of calculation. To mitigate this problem, 

the SPPF module is substituted with the AIFI module, which focuses on processing advanced image features. 

This contributes to enhanced detection accuracy while lowering computational cost. Compared to traditional 

multi-scale feature fusion methods, AIFI employs a single-scale Transformer encoder to focus feature fusion 

within the same scale. This helps capture finer-grained information and reduces the computational cost. 

Advanced features contain richer semantic content compared to low-level features, which have limited 

contribution due to insufficient semantic representation. As a result, the intra-scale interactions of lower-level 

features are redundant. 

As seen in Fig. 5, the AIFI firstly linearizes the input 2D picture S5, converting it into a one-dimensional 

vector by arranging the rows sequentially. Then, a multi-head attention mechanism is employed, enabling the 

model to gather information from different spatial locations in the sequence, which strengthens its capacity to 

model long-range dependencies in the feature representation. The processed sequence is then combined with 

the original input for layer normalization. Afterward, the output undergoes a feed-forward network (FFN) for 

non-linear transformation and feature extraction. Finally, the FFN output is added to the previously normalized 

result and undergoes an additional layer of normalization. The one-dimensional vector is then reshaped back 

into its 2D form, F5, for further processing in the subsequent network. The specific process can be described 

by Equations (1) and (2). 

 

( )Q K V Flatten Input= = = (1)

 
( ( ( , , )))Output Reshape FNN MultiHead Q K V= (2)
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Here, Flatten refers to the flattening operation, Q, K, and V are the results of applying the flattening operation 

on the 2D image, MultiHead denotes the multi-head attention mechanism, Reshape stands for the reshaping 

operation, and FFN represents the feed-forward network operation. 

 

Fig. 5 - Structure of AIFI module, S3, S4, S5 represent different scale feature maps 

 

Thanks to the Multi-Head Self-Attention and the FFN network, AIFI realize a scale-level interactions 

between advanced features, which helps the network better represent the connections of conceptual entities 

in the picture. This leads to improved extraction of subtle features of apple leaf spots, enhancing the detection 

performance and reducing false detections. Meanwhile, due to the feature fusion within the scale in AIFI, the 

computational cost of the detection model is reduced. 

 

MPC Downsampling Enhancement Module 

Downsampling techniques facilitate the processing of feature maps at different scales and objects by 

reducing the spatial size of feature maps. However, they also lead to information loss and a reduction in 

resolution. To address the partial loss of leaf spot information during downsampling, this study designs an 

improved downsampling module called MPC, as visualized in Fig. 6. The MPC downsampling is designed to 

strengthen the model’s concentration on small lesion details in complex backgrounds, effectively preserving 

crucial contextual information and improving detection accuracy. The main components of the MPC are a 1×1 

convolution, a Maxpool2d operation, a PConv, and a 3×3 convolution. 

 

 

Fig. 6 - Structure of MPC module  
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Traditional downsampling in YOLOv8 uses a standalone 3×3 convolution module. While this module 

captures key features from the input data through filtering operations on the feature map, it also reduces the 

resolution of the feature map, impairing the capability to capture subtle patterns. To overcome this difficulty 

and improve the model’s effectiveness and lightweight design, this study integrates PConv into the 

downsampling process. A comparison of the convolution operations between partial convolution and standard 

convolution is shown in Fig. 7. 

 

Fig. 7 - Convolutional operation comparison diagram  

 

PConv leverages the inherent redundancy of feature representations by selectively performing 

standard convolution on a portion of the input channels without influencing the transformations of the remaining 

channels (Fu et al., 2024). Here, h, w represent the input height and width dimensions, respectively; c is input 

channels count; cp refers to used convolution channels count; k denotes the kernel size used for the partial 

convolution; and r indicates the ratio of used convolution channels. The Floating Point Operations (FLOPs) 

after using partial convolution can be represented by Equation (3). 

 
2 2

PConv pF h w k c=                                                          (3) 

pc
r

c
=                                                                                     (4) 

 Given the default participation ratio r set to 1/4, PConv achieves only 1/16 of the computational 

complexity compared to standard convolution, significantly reducing the time and memory required for 

convolution operations. 

 

 During the downsampling enhancement process, MPC integrates PConv with Maxpool2d to better 

balance computational efficiency and information integrity. Partial convolution extracts spatial features by 

applying convolution operations to only a portion of channels, keeping the other channels unaltered during 

feature processing. This strategy enables the model to efficiently process complex input images while 

demonstrating excellent capability in extracting disease spot features in complex backgrounds. Furthermore, 

it keeps the model from obsessively concentrating on irrelevant information, such as the background, thus 

reducing unnecessary computational overhead. As a result, both detection precision and computing efficiency 

in leaf spot detection are improved. 

 

Efficient Head  

Compared to the coupled structure of the detection head in the YOLOv5 model, the YOLOv8 head 

design employs a decoupled structure, in which classification and regression operation are processed 

separately, as presented in Fig. 8. Specifically, each branch comprises a 3×3 convolutional and a 1×1 

convolutional, with each branch designed to focus on its respective task. 
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Fig. 8 - Structure of YOLOv8 Detection Head 

 

 To lessen the computational overhead and the parameter quantity while improving both detection 

speed and accuracy, this paper redesigns the Efficient Head based on the concept of parameter sharing, as 

shown in Fig. 9. The idea of merging first and then splitting is adopted, replacing the original two 3×3 

convolutional blocks with a combination of the fast and efficient PConv and a 1×1 convolution. This 

improvement lowers parameter quantity and computing load while enabling more efficient feature extraction. 

 

 

Fig. 9 - Structure of Efficient Head 

 

RESULTS 

Experimental Environment 

 The experimental environment comprised CUDA 11.7 on Ubuntu 18.04, using PyCharm as the 

development platform, PyTorch 2.0. as the deep learning framework, Python 3.8.10. An NVIDIA RTX 3060 

GPU (12 GB) provided hardware acceleration. The training process spanned 150 epochs, adopting the 

Stochastic Gradient Descent (SGD) optimizer, an initial learning rate of 0.01, a batch size of 16, an initial 

learning rate of 0.01, with a patience parameter of 50. 

 

Evaluation Metrics 

 To evaluate the model’s performance impartially, frequent object detection metrics are employed, 

including Precision (P), Recall (R), mean Average Precision (mAP), and FLOPs. The formula is used for 

calculating P and R can be expressed by Equations (5) and (6). 

TP
P

TP FP
=

+
                                                                   (5) 

TP
R

TP FN
=

+
                                                                   (6) 

Here, TP represents the quantity of diseases that the algorithm successfully recognized; FP represents the 

quantity of diseases that the algorithm incorrectly identified; FN represents the quantity of diseases not 

identified. 

 Although precision and recall are commonly used performance metrics, there is an inherent trade-off 

between them—optimizing one metric often comes at the expense of the other. Therefore, relying solely on 

either precision or recall fails to present a thorough and intuitive assessment of overall performance of a model. 

In contrast, mAP integrates characteristics of both metrics by calculating the average precision across varying 

recall levels, offering a more holistic evaluation. Furthermore, mAP more accurately reflects a model’s 

performance under different detection difficulty levels, making it a more representative metric. The expression 

used to compute mAP is provided below: 
1

0
( )AP P R dR=                                                                 (7) 
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1

1 c

i

i

mAP AP
c =

=                                                                 (8) 

Here c represents the count of classes in the dataset, i stands for the class index, and AP represents the area 

under the P-R curve for a single class. 
 

 

Ablation Experiment 

 To evaluate the effectiveness of the suggested improvements in apple leaf lesion detection, ablation 

experiments were conducted on each improved method, as illustrated Table 1. All experiments were conducted 

without the use of transfer learning to ensure a fair and accurate evaluation of the proposed model's 

performance. A "√" marks that the improved method was applied in the experimental group. 

Table 1 

Results of ablation experiments  

No. C2f-PE AIFI MPC Efficient Head P/% R/% mAP@0.5/% mAP@0.5:0.95/% FLOPs/G 

1 × × × × 90.5 80.8 89.9 55.0 28.4 
2 √ × × × 90.1 81.1 90.9 55.7 33.3 
3 × √ × × 91.5 81.3 90.9 56.1 28.3 
4 × × √ × 90.1 81.2 90.3 55.3 29.4 
5 × × × √ 89.8 81.7 90.5 55.2 21.5 
6 √ √ × × 89.6 82.4 91.1 56.2 33.2 
7 √ √ √ × 91.6 82.0 91.2 56.1 34.1 
8 √ √ √ √ 91.3 82.3 91.4 56.4 27.2 

 

 In Experiment 2, the C2f-PE module was substituted for the C2f module, which leads to a 1.0% 

improvement in mAP@0.5 relative to the Experiment 1. This result confirms that the C2f-PE module can 

strengthen the model's capacity for localizing small disease spots, but it also increases the model’s 

computational cost by 14.7%. Experiment 3 replaced the SPPF layer with the AIFI module, resulting in 

improvements of 0.5% in recall, 1.0% in mAP@0.5, and 1.1% in mAP@0.5:0.95. This demonstrates that the 

model benefits from intra-scale feature interaction, which enables better extraction of fine-grained features of 

apple leaf spots and enhances overall detection accuracy. In Experiment 4, the downsampling enhancement 

module MPC was added, resulting in a 0.4% improvement in mAP@0.5. This confirms that incorporating the 

MPC module can help the feature extraction process better preserve contextual information and make up for 

the information lost due to downsampling. After the Efficient Head was introduced in Experiment 5, the model’s 

average precision improved by 0.6%, while its floating-point operations were reduced by 24.3%. This verifies 

the efficiency and lightweight characteristics of the Efficient Head. In Experiment 7, the ablation results 

demonstrated a 1.3% improvement in mAP@0.5 and 1.1% and 1.2% increases in precision and recall, 

respectively, compared with the baseline model. This improved detection performance but also increased the 

computational cost by 16.7%. Finally, the PAME-YOLO algorithm, which integrates four improvement methods, 

was compared to the baseline model. The improved PAME-YOLO demonstrated performance gains of 0.8%, 

1.5%, 1.5%, and 1.4% in Precision, Recall, mAP@0.5, and mAP@0.5:0.95, respectively, while achieving a 

4.2% reduction in computational load. Through a succession of experiments and comparative analysis, the 

improvements suggested in this paper has been effectively validated. 

 

Detection Head Comparison 

 This study designs a novel lightweight detection head to enhance the detection efficiency and precision. 

In comparison experiments, several schemes were tested: (a) sharing two 3×3 convolutions; (b) sharing two 

3×3 grouped convolutions; (c) sharing one 1×1 convolution and one 3×3 convolution; (d) sharing one PConv 

and one 1×1 convolution. Table 2 illustrates the comparison results of four schemes. 

Table 2 

Comparison experiment of different detection heads  

Plan P/% R/% mAP@0.5/% FLOPs/G Parameters/M 

(a) 91.5 81.9 91.0 37.5 18246403 
(b) 89.9 82.9 91.0 27.0 12311299 
(c) 91.2 82.2 91.2 32.5 15493891 
(d) 91.3 82.3 91.4 27.2 12589955 
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From the Table, it can be seen that although schemes (a) and (c) achieve higher mAP values, their 

computational cost and parameter count are too large, resulting in lower detection efficiency. Scheme (b), 

while exhibiting lower computational costs and fewer parameters, achieves the lowest precision among all 

schemes. Scheme (d) effectively balances detection precision with model complexity, delivering a high mAP 

value alongside a reduction in model parameters. Therefore, scheme (d) is selected as the detection head for 

the improved model to enhance detection efficiency. 

 

Comparison with Current Advanced Algorithms  

 A comparison between the PAME-YOLO and other mainstream methods is conducted under the same 

condition and the same dataset. As presented in Table 3, the PAME-YOLO outperforms other mainstream 

object detection algorithms in terms of recall, mAP@0.5, and mAP@0.5:0.95. Specifically, the recall is higher 

than RT-DETR-L, YOLOv5s, YOLOv5m, YOLOv7-tiny, YOLOv8n, YOLOv8s, and YOLOv10s by 6.2%, 3.6%, 

2.6%, 2.1%, 4.3%, 1.5%, and 0.4%, respectively, while the mAP@0.5 is higher by 5.2%, 3.0%, 2.0%, 3.4%, 

2.8%, 1.5%, and 0.7%, respectively. The YOLOv5m model achieves the highest detection precision, but its 

parameter and computational requirements are too large. This means it requires higher computational 

resources and larger storage space to operate, making it unsuitable for real-time tasks. Considering all metrics, 

PAME-YOLO demonstrates higher detection precision, recall, and stability than other algorithms, with a 

reasonable model size and computational complexity, allowing it more appropriate for agricultural applications. 

 

Table 3 

Model comparison experiments 

Model P/% R/% mAP@0.5/% mAP@0.5:0.95/% Parameters/M FLOPs/G 

RT-DETR-L 87.1 76.1 86.2 51.9 31989905 103.4 
YOLOv5s 91.5 78.7 88.4 54.0 7018216 15.8 
YOLOv5m 92.3 79.7 89.4 54.5 20861016 47.9 

YOLOv7-tiny 87.2 80.2 88.0 51.6 6020400 13.2 
YOLOv8n 89.9 78.0 88.6 54.2 3006233 8.1 
YOLOv8s 90.5 80.8 89.9 55.0 11126745 28.4 

YOLOv10s 90.6 81.9 90.7 54.5 8037282 24.5 
PAME-YOLO 91.3 82.3 91.4 56.4 12589955 27.2 

 

 

Comparison of different diseases under YOLOv8s and PAME-YOLO 

A comprehensive comparative analysis of precision, recall, and mAP@0.5 was conducted for each 

type of leaf disease using the YOLOv8s and PAME-YOLO models. In Table 4, PAME-YOLO achieves notable 

improvements in all three metrics relative to the original YOLOv8s. This implies that the model possesses a 

stronger ability to recognize diseases and can effectively reduce the occurrence of missed detections and false 

positives, particularly for small target lesions. 

 

Table 4 

Comparison of different diseases under YOLOv8s and PAME-YOLO models 

Class 
YOLOv8s PAME-YOLO 

P/% R/% mAP@0.5/% P/% R/% mAP@0.5/% 

Alternaria leaf spot 91.6 69.7 85.8 92.4 71.2 86.7 
Grey spot 89.1 82.4 88.4 89.5 85.1 91.6 

Rust 90.8 90.4 95.5 92.0 90.5 95.9 

 

 

Heatmap Visualization 

 In the apple leaf disease detection task, the Grad-CAM (Selvaraju et al., 2017) method was used to 

visually highlight the regions of interest and the areas where the model concentrates its attention during object 

detection, further enhancing the comprehension of the decision-making process. In the heatmap, darker pixels 

indicate a greater contribution to the prediction result, while lighter pixels indicate a smaller contribution. The 

heatmaps before and after model improvement are displayed in Fig. 10. It is evident that the PAME-YOLO 

model pays less attention to irrelevant information such as the background, and focuses more on the disease 

spots, making it better suited for complex orchard environments. 
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Fig. 10 - Visualization results of a heatmap 

 

Visualization of Detection Results  

Several images of leaves affected by Alternaria leaf spot, grey spot, and rust diseases were randomly 

selected to present detection results. As illustrated in Fig. 11, YOLOv8s shows suboptimal performance in 

detecting small spots on leaves in complex backgrounds. Specifically, it fails to detect some instances of 

Alternaria leaf spot and rust disease when the targets are small. In contrast, PAME-YOLO enhances the 

localization capability for small lesions by introducing the C2f-PE module, enabling accurate detection of spots 

without missed cases. Additionally, when detecting grey spot disease, the baseline model mistook the 

photographer's finger at the bottom left of the image for a lesion, resulting in a false detection. In contrast, 

PAME-YOLO correctly distinguished the actual spots from irrelevant objects, avoiding false detections and 

demonstrating higher robustness. In the figure, the yellow box represents a missed target, the blue box 

represents an error detection target. 

 

Fig. 11 - Detection effect comparison diagram 

 

Model Deployment and Application Implementation 

 As illustrated in Fig. 12, the trained model for apple leaf disease spot detection was quantized using 

the NCNN inference framework and it was deployed to a mobile platform, based on which an application 

named Apple Leaf Disease Detector was subsequently developed. To ensure cross-platform compatibility, the 

user interface was developed using uni-app. The application was then compiled into an APK file via Android 

Studio and subsequently installed and tested on a smartphone running Android 13. The main interface of the 

application includes an image preview panel, a button for uploading images from the gallery, a camera button 

for real-time capture, and a detection button.  
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 Users are provided with the option to either import apple leaf images from the device gallery or acquire 

them in real time via the built-in camera. After the image is uploaded or captured, the user can click the 

"Detection" button to initiate model inference. The detection results are displayed on the image in the form of 

bounding boxes, along with disease category labels and confidence scores. As can be observed from Fig. 13, 

this app can accurately detect apple leaf lesion across different categories even in challenging orchard 

environments. 

 The deployed application is lightweight and responsive, supporting accelerated inference via NCCN. 

This enables efficient, low-latency identification of apple leaf diseases in the field, offering strong practical 

value for fruit growers. 

 

 
Fig. 12 - Model quantization and conversion pipeline 

 

 

    
 

Fig. 13 - Detection of Apple Leaf Diseases on Mobile Platforms 

 

CONCLUSIONS 

 This study proposed an enhanced object detection algorithm called PAME-YOLO that focused on the 

issues of low detection accuracy and the susceptibility to overlooking small lesion targets in apple leaf disease 

diagnosis under complicated backgrounds. Specifically, the C2f-PE feature extraction module was designed 

to improve the model’s detection accuracy for small lesion targets. In addition, an intra-scale feature interaction 

mechanism was introduced to capture more fine-grained lesion information and reduce false detections. The 

downsampling enhancement module, MPC, was designed to ensure that critical contextual information was 

comprehensively preserved at the feature extraction stage. Lastly, a lightweight and efficient detection head 

was employed to reduce model parameters and computational cost, thereby enhancing both detection 

efficiency and accuracy. The outcomes of the experiment demonstrate that, compared with the YOLOv8s 

baseline, the improved algorithm yields an increase of 1.5% in recall, 1.5% in mAP@0.5, and 1.4% in 

mAP@0.5:0.95. Relative to other mainstream algorithms, the proposed algorithm shows exceptional detection 

performance under complicated conditions, highlighting its advantages for practical applications. This provides 

important technical assistance for the early control and management of apple leaf diseases, helping to reduce 

crop loss and improve orchard health. In subsequent research, the dataset will be further expanded by 

incorporating a greater diversity of apple leaf disease images, aiming to strengthen the model’s generalization 

capability and practical usefulness. 
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